Single-stranded loops as end-label polarity markers for double-stranded linear DNA templates in atomic force microscopy
نویسندگان
چکیده
Visualization of DNA-protein interactions by atomic force microscopy (AFM) has deepened our understanding of molecular processes such as DNA transcription. Interpretation of systems where more than one protein acts on a single template, however, is complicated by protein molecules migrating along the DNA. Single-molecule AFM imaging experiments can reveal more information if the polarity of the template can be determined. A nucleic acid-based approach to end-labelling is desirable because it does not compromise the sample preparation procedures for biomolecular AFM. Here, we report a method involving oligonucleotide loop-primed synthesis for the end labelling of double-stranded DNA to discriminate the polarity of linear templates at the single-molecule level. Single-stranded oligonucleotide primers were designed to allow loop formation while retaining 3'-single-strand extensions to facilitate primer annealing to the template. Following a DNA polymerase extension, the labelled templates were shown to have the ability to form open promoter complexes on a model nested gene template using two Escherichia coli RNA polymerases in a convergent transcription arrangement. Analysis of the AFM images indicates that the added loops have no effect on the ability of the promoters to recruit RNA polymerase. This labelling strategy is proposed as a generic methodology for end-labelling linear DNA for studying DNA-protein interactions by AFM.
منابع مشابه
Single Molecule DNA Biophysics with Atomic Force Microscopy
Structural and functional properties of double stranded deoxyribonucleic acid (dsDNA) are investigated by atomic force microscopy (AFM) on a single molecule level. Here, we characterize different linear and circular DNA systems in terms of their geometry and topology, and visualize enzyme binding of restriction endonuclease Hae III to DNA. Manipulation of single DNA molecules is demonstrated by...
متن کاملSynthesis of circular double-stranded DNA having single-stranded recognition sequence as molecular-physical probe for nucleic acid hybridization detection based on atomic force microscopy imaging.
A new class of DNA probes having a mechanically detectable tag is reported. The DNA probe, which consists of a single-stranded recognition sequence and a double-stranded circular DNA entity, was prepared by polymerase reaction. M13mp18 single strand and a 32mer oligodeoxynucleotide whose 5'-end is decorated with the recognition sequence were used in combination as template and primer, respectiv...
متن کاملEscherichia coli RNA polymerase activity observed using atomic force microscopy.
Fluid tapping-mode atomic force microscopy (AFM) was used to observe Escherichia coli RNA polymerase (RNAP) transcribing two different linear double-stranded (ds) DNA templates. The transcription process was detected by observing the translocation of the DNA template by RNAP on addition of ribonucleoside 5'-triphosphates (NTPs) in sequential AFM images. Stalled ternary complexes of RNAP, dsDNA ...
متن کاملFormation of a DNA loop at the replication fork generated by bacteriophage T7 replication proteins.
Intermediates in the replication of circular and linear M13 double-stranded DNA by bacteriophage T7 proteins have been examined by electron microscopy. Synthesis generated double-stranded DNA molecules containing a single replication fork with a linear duplex tail. A complex presumably consisting of T7 DNA polymerase and gene 4 helicase/primase molecules was present at the fork together with a ...
متن کاملAtomic force microscopy of long and short double-stranded, single-stranded and triple-stranded nucleic acids.
Atomic force microscopy (AFM, also called scanning force microscopy) is proving to be a useful technique for imaging DNA. Thus it is important to push the limits of AFM imaging in order to explore both what types of DNA can be reliably imaged and identified and also what substrates and methods of sample preparation are suitable. The following advances in AFM of DNA are presented here. (i) DNA m...
متن کامل